Diffusive approximation of fisher's equation

نویسندگان

چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Random approximation of a general symmetric equation

In this paper, we prove the Hyers-Ulam stability of the symmetric functionalequation $f(ph_1(x,y))=ph_2(f(x), f(y))$ in random normed spaces. As a consequence, weobtain some random stability results in the sense of Hyers-Ulam-Rassias.

متن کامل

Asymptotic Analysis of Upwind Discontinuous Galerkin Approximation of the Radiative Transport Equation in the Diffusive Limit

We revisit some results from M. L. Adams [Nucl. Sci. Engrg., 137 (2001), pp. 298– 333]. Using functional analytic tools we prove that a necessary and sufficient condition for the standard upwind discontinuous Galerkin approximation to converge to the correct limit solution in the diffusive regime is that the approximation space contains a linear space of continuous functions, and the restrictio...

متن کامل

Diffusive Approximation of a Time-Fractional Burger's Equation in Nonlinear Acoustics

A fractional time derivative is introduced into Burger’s equation to model losses of nonlinear waves. This term amounts to a time convolution product, which greatly penalizes the numerical modeling. A diffusive representation of the fractional derivative is adopted here, replacing this nonlocal operator by a continuum of memory variables that satisfy local-in-time ordinary differential equation...

متن کامل

Existence, uniqueness and approximation of stochastic Schrödinger equation: the diffusive case

Recent developments in quantum physics make heavy use of so-called “quantum trajectories”. Mathematically, this theory gives rise to “stochastic Schrödinger equations”, that is, pertubations of Schrödinger-type equations under the form of stochastic differential equations. But such equations are in general not of the usual type as considered in the litterature. They pose a serious problem in te...

متن کامل

random approximation of a general symmetric equation

in this paper, we prove the hyers-ulam stability of the symmetric functionalequation $f(ph_1(x,y))=ph_2(f(x), f(y))$ in random normed spaces. as a consequence, weobtain some random stability results in the sense of hyers-ulam-rassias.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Computers & Mathematics with Applications

سال: 2000

ISSN: 0898-1221

DOI: 10.1016/s0898-1221(00)00090-0